The Cotranslational Integration of Membrane Proteins into the Phospholipid Bilayer Is a Multistep Process

نویسندگان

  • Hung Do
  • Domina Falcone
  • Jialing Lin
  • David W Andrews
  • Arthur E Johnson
چکیده

During the cotranslational integration of a nascent protein into the endoplasmic reticulum membrane, the transmembrane (TM) sequence moves out of an aqueous pore formed by Sec61alpha, TRAM, and other proteins and into the nonpolar lipid bilayer. Photocross-linking reveals that this movement involves the sequential passage of the TM domain through three different proteinaceous environments: one adjacent to Sec61alpha and TRAM and two adjacent to TRAM that place different restrictions on TM domain movement. In addition, the TM sequence is not allowed to diffuse into the bilayer from the final TRAM-proximal site until translation terminates. Cotranslational integration is therefore linked to translation and occurs via an ordered multistep pathway at an endoplasmic reticulum site that is multilayered both structurally and functionally.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cotranslational membrane protein biogenesis at the endoplasmic reticulum.

In eukaryotic cells, most polypeptides destined to become membrane proteins are initially integrated into the membrane of the endoplasmic reticulum (ER) before being sorted to the location at which they function. Integration occurs at sites in the ER membrane termed translocons that are comprised of a specific set of membrane proteins (1, 2). In most cases, proteins are integrated into the bila...

متن کامل

Characterization of biophysical properties of single chloride channel in rat brain mitochondrial inner membrane by channel incorporation into bilayer lipid membrane

Introduction: Recent studies have shown the presence of Cl- channels in heart and liver mitochondrial membranes. In this work, we have characterized the functional profile of a Cl- channel from rat brain mitochondria. Methods: After removing and homogenizing the rat brain, the supernatant was separately centrifuged in MSEdigitonin, H2O and Na2CO3 and mitochondrial inner membrane vesicles wer...

متن کامل

N-myristoylation determines dual targeting of mammalian NADH-cytochrome b(5) reductase to ER and mitochondrial outer membranes by a mechanism of kinetic partitioning

Mammalian NADH-cytochrome b5 reductase (b5R) is an N-myristoylated protein that is dually targeted to ER and mitochondrial outer membranes. The N-linked myristate is not required for anchorage to membranes because a stretch of hydrophobic amino acids close to the NH2 terminus guarantees a tight interaction of the protein with the phospholipid bilayer. Instead, the fatty acid is required for tar...

متن کامل

Cooperation of transmembrane segments during the integration of a double-spanning protein into the ER membrane.

While membrane insertion of single-spanning membrane proteins into the endoplasmic reticulum (ER) is relatively well understood, it is unclear how multi-spanning proteins integrate. We have investigated the cotranslational ER integration of a double-spanning protein that is derived from leader peptidase. Both transmembrane (TM) segments are inserted into the membrane by the Sec61 channel. While...

متن کامل

α-Hemolysin pore formation into a supported phospholipid bilayer using cell-free expression.

Cell-free protein synthesis is becoming a serious alternative to cell-based protein expression. Cell-free systems can deliver large amounts of cytoplasmic recombinant proteins after a few hours of incubation. Recent studies have shown that membrane proteins can be also expressed in cell-free reactions and directly inserted into phospholipid membranes. In this work, we present a quantitative met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 85  شماره 

صفحات  -

تاریخ انتشار 1996